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Batch automated image processing of 2D seismic data for salt
discrimination and basin-wide mapping

Scott Morris!, Shuang Li?, Tony Dupont', and John D. Grace'

ABSTRACT

‘We have explored the technical utility of analyzing massive
sets of digital 2D seismic data, collected and processed in
dozens of different surveys, conducted more than 25 years
ago, using batch, automated and unsupervised pattern recog-
nition techniques to produce a basin-wide map of the top of
salt. This workflow was developed for the United States por-
tion of the Gulf of Mexico to detect top-salt boundaries on
2D poststack migrated lines. Texture-based attributes as well
as novel, reflector-based attributes were used to discriminate
between salt and nonsalt on each seismic line. Explicit
measures of accuracy were not calculated because the data are
unlabeled, but an assessment of confidence was used to score
the boundaries. The depth to the top of the salt was estimated
for more than 67% of the study area (278,000 km? or
107,000 mi?), 17% of the study area had insufficient data
for processing and analysis, and 16% of the area did not meet
confidence requirements for inclusion. The final results com-
pared well with published maps of salt and the locations of
salt-trapped fields. Reliable mapping of salt deeper than 6 s
two-way time could not be achieved with this data set and
approach because many seismic images had indistinguishable
features at this depth. The computing time was greater than
linear in the number of lines, but parallelization and changes
in hardware configuration could reduce the run time of about
three weeks to about three days.

INTRODUCTION

enormous volumes of vintage 2D data obsolete. We offer two hypoth-
eses to challenge that conclusion. First, applying an innovative
combination of image processing techniques, in batches, produces
valuable new information from these legacy assets at very low mar-
ginal costs. Second, changing the scale of intensive analysis from the
prospect/field level to a whole region, or a basin, further leverages the
return to investment in automated interpretation.

To test these propositions, we map basin-wide top of salt across
the U.S. portion of the Gulf of Mexico (GOM). We applied a work-
flow of image processing, analysis of reflectors, and macroediting
techniques to a set of 8043 2D poststack, migrated SEG-Y lines that
cover approximately 278,000 km? (107,000 mi®) of the northern
shelf and slope. They were shot by about a dozen operators and con-
tractors in 82 surveys, all more than 25 years ago, between 1981 and
1992. This trove of disparate data therefore reflects the character of
many of the seismic legacy assets that companies hold, as well as
some of the seismic data now being released into the public domain
(e.g., Common Data Access [CDA, 2018] in the United Kingdom
and the United States Geological Survey [Triezenberg et al., 2016]
in the United States).

Our central scientific enterprise, constructing a basin-wide product
using thousands of lines of seismic data, accommodating disparities
in their age and provenance — while minimizing cost — required
renovating previous approaches and departing from some analytic
traditions. The geophysical literature on automated salt discrimina-
tion is dominated by examples developed on relatively small, field
data sets, often with lines on which salt was known to exist, a priori.
(Alternatively, some research has been conducted on larger data sets;
however, these were synthetic data sets, which are also useful as
proof-of-concept tests but do not face the problems of application to
field seismic data. See Araya-Polo et al. (2017) for methods devel-
oped for fault identification, tested on synthetic data, using an ap-
proach that could be applied to salt.) These small-sample, proof-

Seismic technology’s advancement over the past three decades,
particularly the transition from 2D to 3D, has seemingly rendered

of-concept experiments have been highly valuable. After more than
20 years of research, they founded a new paradigm for geophysical

Manuscript received by the Editor 30 July 2018; revised manuscript received 17 July 2019; published ahead of production 4 September 2019; published online
30 October 2019.

Earth Science Associates, Long Beach, California, USA. E-mail: scott@earthsci.com; tony @earthsci.com; john@earthsci.com.

University of Southern California, Earth Science Associates and Graduate Program in Applied Mathematics, Los Angeles, California, USA. E-mail:
lishuang @usc.edutony @earthsci.com.

© 2019 Society of Exploration Geophysicists. All rights reserved.

0113

Downloaded from http://pubs.geoscienceworld.org/seg/geophysics/article-pdf/84/6/0113/4933543/ge0-2018-0569.1.pdf
bv The lib East China Geol Inst user



0114 Morris et al.

analysis. However, rather than locating salt on a line where it had
already been found manually, we investigate the scalability and ro-
bustness of these methods and a workflow for a basin full of seismic.

Finally, the scale of our approach required special attention to two
issues that do not arise with small test sets. Naturally, massive data sets
always require consideration of computational complexity; a regional
or basin-wide process must run within a practical length of time.
Moreover, of great practical importance, analyzing thousands of lines
meant hand-checking accuracy by line was impossible. Therefore,
methods for automatic evaluation of confidence in the estimated boun-
daries were developed to convey certainty in the analysis to users.

We address four basic questions. Is our methodology, and its
component algorithms, technically effective for regional to basin-
wide mapping of salt? Central to that question is the adequacy of
our combined analyses of seismic texture and reflector geometry for
salt/nonsalt classification. To the basic requirement that the method
works, we add: Can this approach be generalized — scaled to
batch analysis of thousands of lines — and thereby be usefully
applied to a region or basin? Is this methodology robust in the face
of the problems of old data, collected from a large number of dis-
parate surveys? Finally, are the marginal costs to implement our
approach low enough to motivate exploiting the countless, enor-
mous legacy seismic assets, which once cost billions of dollars
to acquire, but are now otherwise free but unused?

METHODOLOGY

Two classes of attributes were used to discriminate between salt
and nonsalt in the seismic images. First, seismic texture, the charac-
teristic patterns of reflection amplitudes defined by the magnitude
and variation of neighboring samples at a given spatial location
(Gao, 2003), was exploited. Texture is the primary attribute in many
image segmentation problems (Bhosle and Pawar, 2013) and has
been used frequently to detect salt bodies (Hegazy and AlRegib,
2014; Shafiq et al., 2017b). Second, reflector analysis used the
well-known relationship between the geometry and distribution of
reflectors and salt domes. Estimated dip attributes (Halpert and
Clapp, 2008) have been used to exploit this relationship (Berthelot
et al., 2013), but this method extracts whole reflectors of a seismic
image and categorizes them rather than relying on texture analysis.

The texture-based attributes were calculated using the gray-level
co-occurrence matrix (GLCM) methodology, originally developed
by Haralick et al. (1973), to help partition areas of salt and nonsalt.
The development of GLCM in geophysics, and its fairly wide
application in discrimination, are reviewed by Gao (2011) and Ber-
thelot et al. (2013). We focused on four salt-discriminatory GLCM
statistics: contrast, homogeneity, entropy, and dissimilarity.

The texture-based discrimination was supplemented by reflector
analysis. Grouping contiguous pixels of similar intensity in the seis-
mic image allows reflectors to be treated as individual logical objects,
rather than many pixels. The reflectors, easily subset on length and
angle, facilitate the search for specific geometric properties observed
around salt domes. For one measure, the reflectors were used to di-
rectly estimate the salt/nonsalt boundary. In the second measure, re-
flectors were segregated by geometric characteristics associated with
locally bedded (nonsalt) rock, and their densities mapped, which pro-
vided evidence of where salt is not likely to be present.

The outputs of each of these methods were combined into a salt
score for each pixel in a line, which was then subject to a two-group
clustering algorithm (Otsu, 1979). The resulting raw black-and-white

image of the line was then edited with morphological tools to (1) filter
out the smallest estimated salt bodies (presumptive false positives),
(2) fill the smallest holes in estimated salt bodies (presumptive false
negatives), and (3) smooth boundaries to more closely approximate
geologically acceptable interpretations (Wallet and Pepper, 2013).
The focus then shifted to evaluation of confidence in the estimated
salt/nonsalt boundaries measuring the change in texture (CIT) along
the boundary. This method takes inspiration from the gradient of tex-
ture (GOT), which is commonly used in image analysis to evaluate
boundaries between textures, as described by Shafiq et al. (2017a)
and Hegazy et al. (2015). The average CIT of each salt polygon be-
came a grade of confidence in the estimated boundary; this influ-
enced the decision to retain or reject each candidate boundary. The
average CIT scores for each boundary were also reflected as points
along the line’s navigation data coincident with the lateral extent of
each estimated salt boundary to produce regional maps of confidence.
In the final step, each line and its estimated salt boundaries were
converted from time to depth using empirically estimated velocity
functions. Results in depth are expected by geologists and engi-
neers. The final products were confidence-marked top of salt maps
in time and depth and 3D surfaces for use in 3D geographic infor-
mation systems. The project workflow is outlined in Figure 1.

Data

Data for our experiment were drawn from publicly available seis-
mic surveys submitted to the U.S. government by operators in the
U.S. federal portion of the GOM (United States Bureau of Ocean
Energy Management [USBOEM], 2018). The 8043 2D time sec-
tions totaled approximately 450,000 km (280,000 mi) in length, aver-
aged 56 km (35 mi) long, and typically extended to approximately 8 s
in two-way time. The U.S. government holds these records confiden-
tial for 25 years before public release. All surveys used here were shot
between 1981 and 1992. They are, by any measure, old data.

We illustrate our methodology using part of one line, “w-86-314,”
from survey “1986 namss.B-39-86-LA.msc.airgun,” a 51.4 km
(31.9 mi) line, with a maximum recorded time of 7.5 s (Figure 2a).
It was shot in 1986 by Western Geophysical from northwest to south-
east across the southwestern part of the Ship Shoal protraction area of
the GOM (Figure 2b). It covers the Ship Shoal 154 field, trapped on a
salt dome, with a latest estimated ultimate recovery of 132 million
barrels of oil equivalent (USBOEM, 2018).

Texture analysis

The amplitude records in each SEG-Y file were read and mapped
to a bin based on the number of standard deviations (|6(A)|.) away
from a line-wise mean value, which, in almost all cases, was zero.
We binned them into a seven-level gray scale (Table 1). These boun-
daries reflect a nonlinear transformation in which very low ampli-
tude values (which can produce false-positive salt classifications)
were given a more detailed breakdown in gray levels to help limit
these errors. Conversely, very high absolute values of amplitude
were compressed because these provide diminishing useful infor-
mation for salt discrimination.

The seismic texture of salt (particularly in domes) is often obvious
on visual inspection: Reflectors in salt bodies are typically and dis-
tinguishably weak, short, chaotically oriented, and sparse compared
to surrounding stratified rock. Our analysis attempts to approximate
the visual differentiation that comes naturally to an expert interpreter.
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In this, we extend previous work using GLCM
analysis of seismic texture as discussed in Wu
(2016), Amin et al. (2015), Wang et al. (2015),
Hegazy and Alregib (2014), and Berthelot et al.
(2013). Our implementation used the GLCM li-
brary of R (R Core Team, 2013), documented by
Zvoleff (2016). It consists of two steps executed
for each pixel in each seismic section: Build the
GLCMs for all pixels, and compute statistics for
each pixel’s GLCM. For greater detail on imple-
menting GLCM, see Appendix A.

The GLCM statistics become attributes of each
pixel and are therefore mappable for visual assess-
ment of classification accuracy. In experiments
over subsets of lines from different surveys, vin-
tages, and regions, four GLCM statistics were
chosen to maximize the accuracy of classifying
salt versus nonsalt areas and minimize problems
of false positives: contrast a!, homogeneity a?,
dissimilarity o3, and entropy a* Figure 3a-3d).

The functions for three of the four GLCM sta-
tistics chosen are closely related. Dissimilarity and
contrast vary only by the weighting factor for the
distance between each probability cell (p;; ) in
the GLCM and its principal diagonal. For dissimi-
larity, the weight is linear, and for contrast, it is
squared. Homogeneity and contrast are inversely
correlated but not exactly. Both are also separate
functions of GLCM energy, which varies with the
number and the likeness of nonzero elements in
the GLCM (Baraldi and Parmiggiani, 1995).
Homogeneity is not an exact inverse of dissimilar-
ity for the same reason.

The values of each statistic were normalized to
a [0,1] scale. Additionally, all of the GLCM sta-
tistics, with the exception of homogeneity, were
converted from their original equations by defin-
ing them as (1 — af,,,). This makes all the statistics
comparable with 1 associated with the presence of
salt and O the absence of salt.

Reflector analysis

To estimate the two reflector-based compo-
nents of the analysis, the data from the SEG-Y
were divided into two sets: positive and negative
amplitudes. Then, for each of those two sets, the
observations were binned by standard deviation
using the classes in Table 1. All observations in
the positive and negative amplitude sets greater
than or equal to a threshold of 0.25¢ were re-
tained and labeled lower intensity reflectors. This
process was repeated, using a cut-off > 1o, to
create a set that was labeled higher-intensity re-
flectors. Finally, we applied the Raster to Poly-
gon tool in ArcGIS-Pro (ESRI, 2018) to both sets
to group the contiguous pixels meeting the inten-
sity thresholds so reflectors are treated as single
logical objects.

Batch seismic image processing
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Figure 1. The general workflow for the application of batch discrimination of salt in 2D
seismic and the creation of the top of salt maps in time and depth.
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Figure 2. (a) Grayscale image of a portion of the time section of the ‘w-86-314 line in
survey ‘1986 namss.B-39-86-LA.msc.airgun’ running northwest to southeast, left to
right. (b) Mapping of the line and fields in the area (light gray) and the SS154 field
(dark gray). The numbered squares are lease boundaries. Ship Shoal (SS).
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The first reflector-based discriminator exploits an often-observed
regularity in diapiric salt on 2D seismic: Salt bodies are typically
bounded on both sides by relatively short, high-dip, usually intense
reflectors. When the records in the salt body itself are eliminated,
these bounding reflectors form chevrons going up the salt dome
vertically.

In creating this parameter, the set of higher-intensity reflectors was
subset on two criteria: (1) those with the absolute value of the dip
>40° or (2) those reflectors from the higher intensity set that were
in the longest 2.5% of the distribution of reflector lengths. The latter
group was included because, on visual examination, we observed that
sometimes on the boundaries of domes, very long reflectors actually
extend from one side of the dome, over the top and down the other
side, helping to define the boundary. The result of this subsetting is
shown in Figure 4a; the salt dome is very evident.

An algorithm, written in native R, was created to find the area
bounded by these reflectors. It begins by reading row-wise from
left to the right, searching for a positively sloped reflector. Once
found, the search continues to the right for a matching negatively
sloped or very strong reflector. This algorithm was then applied on
the same row in the opposite direction. The pixels in between these
markers (i.e., the bounding chevrons) were turned to 1, and those

Table 1. Transformation from SEG-Y amplitude values to grayscale levels.

outside the chevrons on that line turned to 0. The analysis was re-
peated on the next row down until the entire line was processed. The
result of this processing is shown in Figure 4b.

After the raw image was created, it was edited with morphologi-
cal tools (see below), eliminating very small features and smoothing
edges (Figure 4c). Every pixel was labeled 1, indicating salt, or O for
its absence, and constituted the fifth salt measure a;,,, as shown in
Figure 4c.

The final salt measure, af,,, is created from the set of long, low-
dip reflectors subset by removing the shortest 10th percentile of
reflectors. The density of the remaining reflectors is calculated
in R based on a 51 X 51 moving window and is scaled [0:1] with
1 indicating no reflectors in the window (Figure 4d). Particularly,
for diapiric salt on the shelf, the long, low-dip reflectors of bedded
rock surrounding domes characterize where salt is not. Therefore,
a8, near 1 indicates the presence of salt.

Salt score and partitioning

Completing the texture and reflector analyses for a single seismic
line produced six measures on salt for each pixel. Five of them (the
four GLCM statistics [a),,, ..., a},] and the long-reflector density
raster [aS,,]) were continuous variables from zero to one. The other
reflector measure, being inside or outside match-
ing high-dip reflectors, was treated as a two-state
(0/1) categorical variable a;,),.

For each pixel in the line, a salt score (s,,,)

Gray Gray Gray Gray was computed as the arithmetic average of the
level Bin value level Bin value six salt measures (a,,, ...,aS,). The raw salt

] score for the study line is shown in Figure 5a. To
1 o(|A]) 0.1 White 5 1>0(]A) 1.5 80% gray partition the salt score raster into areas of salt and
2 0.1 > o(]A]) €025  15% gray 6 1.5>06(JA]) <2 90% gray  nonsalt, we applied a clustering algorithm (Otsu,
3 0.25 > 6(]A]) £0.5  30% gray 7 o(|A]) > 2.0 Black 1979). It reflects a common approach to statisti-
4 0.5>o(|A]) < 1 60% gray cal discriminant analysis: assign samples (pixels)

to one of two classes to maximize the between-

Note: |A|, absolute value of amplitude; o, standard deviation.
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Figure 3. The GLCM statistics on a subset of Figure 2a around the salt dome: (a) con-
trast, (b) homogeneity, (c) dissimilarity, and (d) entropy. Each figure has the scale 0-1

(black to white), with O interpreted as nonsalt and 1 as salt.

class variance and minimize the within-class vari-
ance. This can be algebraically reduced to maxi-
mize the ratio of the between-class variance to the
total variance of pixels’ grayscale values over the
entire image. The raw partitioning of the study
section into salt/nonsalt is shown in Figure 5b.

Morphological processing

The raw salt/nonsalt partition in Figure 5b is
an image in need of editing to eliminate the effects
of processing. This included removing very small
estimated salt bodies and cleaning the boundaries
of the larger estimated salt bodies, principally
to remove high-frequency noise. The opening
and closing tools were used for these tasks, as de-
scribed by Shafiq et al. (2015), Wallet and Pepper
(2013), and Urbach and Wilkinson (2008). The
result is shown in Figure 6a. Then, small holes of
nonsalt were filled in within bodies of large salt
features. All three methods were implemented
in the EBImage package in R (Pau et al,
2010). After all morphological processing was
complete, the final time boundaries were extracted
(Figure 6b).
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processing, was complete, the results in time were 2s -
n}apped for a Gulf-wide top of salt map. Inspec- 3s
tion revealed some problems at a macrolevel (i.e.,
. . 4s
at the survey or regional levels). These fell into
four groups: 35 7
6s
1) Local outliers: Certain locations contain _

multiple seismic lines (often from disparate c)
surveys) in very close proximity. In some
of these areas, the results from one line

1Sl

may be different from the others, which cre- > -
ate local outliers. A cluster analysis was per- )--: . -

formed in ArcGIS Pro using the Anselin s ™ e
Local Moran’s I tool (ESRI, 2018) to locate > s 5 |
these outliers and remove them. 0 (Non-Salt) , ,A‘

2) Survey-level acquisition/processing problems:

Ip some Surveys, al? lines shared characteris- Figure 4. The intermediate and final results of analysis of the reflector data. (a) Mapping
tics that interfered with our process. A few sur- of the strong reflectors in the study line. High-dip reflectors with positive slopes (up to
veys were visually too dark relative to the the right) are shown in white; high-dip lines with negative slopes are shown in light gray.
others, apparently due to different handling of Strong low-dip lines are shown in dark gray. (b) The assignment of the space between
PP v ou . ne paired high-dip reflectors to white. (c) The result of morphological editing of the raw

the range of amplitudes. The change in some image (b). (d) The density of long, and generally, low-dip reflectors, indicating the ab-

of the components of the GLCM analysis sence of salt.
cured, or at least alleviated, some of these
problems.

3) Local geologic anomalies within surveys: On
inspection, some of the apparent salt bodies
seemed more likely to be expressions of other
geologic features. This occurred around the
mouth of the current course of the Mississippi
River; it was also mirrored at two previous
Mississippi courses as they came offshore.
They may be distributary mouth bars or related
deltaic facies that produced, from a salt dis-
crimination viewpoint, false positives. The
questionable data within the lines affected were
removed.

4) Survey-level problems of unknown prov-
enance: In a few cases, large areas of contigu- Figure 5. ga) The raw salt score computed from the six classification measurements
ous shallow salt were mapped, apparently (a', ...,a®). (b) The transformation of the raw salt score image in (a) into a two-state
correlated with survey boundaries. Inspection clustering through the application of Otsu’s (1979) algorithm.
yielded no corresponding salt, and the source
of the irregularities could not be identified. No
surgical excision or algorithm modification
could suitably resolve the problem, so the sur-
veys were dropped (e.g., from the Brazos pro-
traction area on the Texas shelf to the south).

15,000 m

0m 15,000 m 30,000 m
S S I — —

Additionally, many false positives were cre-
ated by salt boundaries that were far too small
to be anything more than processing artifacts
not removed by the previous morphological op-
erations. The smallest 75% of the boundary lines
were removed. This strict rule certainly removed
some valid boundaries; however, the cost of re- o

inovlmg some good bo%n?iages Vgrsys the benefﬁ Figure 6. (a) The effect of the application of the opening and closing morphological
0 also remove man?/ a 01'm apes 15 a goo editing tools (the fill tool is not separately shown because its role in this line was to
trade-off when creating a basin-wide top of salt fill the two small holes in the interior of the salt in [a]). (b) The final, postmorphological
map. editing, salt boundary on the time image of the study line.
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Measuring confidence

In processing more than 8000 seismic lines, with no pretense to
hand check the quality and reliability of each one individually, com-
municating certainty in the analysis was critical for building a tech-
nologically useful process. Therefore, an automated assessment was
applied to every salt boundary estimated in the study. At the next
level of aggregation, the average certainty score for each boundary
in a line was projected to the points overlying its lateral extent onto
the navigation data of the line for regional mapping.

We adopted two screening criteria and applied them to each es-
timated salt boundary. The principal measure was a simple CIT, in-
spired by the GOT method. The GOT is used frequently in detecting
salt bodies using texture attributes (Hegazy et al., 2015) with a wide
variety of texture dissimilarity functions (Shafiq et al., 2017b). The
CIT measures the change in pixel intensity at a given pixel by using
a vertical and horizontal search window. Although the CIT can be
computed for any pixel (with an exception near edges), here it is
only calculated along the estimated salt boundary. The CIT measure
gives equal weight to all pixels in the window by performing a con-
volution using a large (11 X 51or51 X 11) filter mask. Mathemati-
cally, it is defined as follows:

1 ... 1 0 -1 ... -1
Co=1|1 ... 1 ... =1 ... =1|*xW (D)
I ... 1 0 -1 ... -1
11x51
1 ... 1. 0 -1 .. —1]"
Co=|1 ... 1 ... -1 ... -1 *W,
1 ... 1 0 -1 ... -1
51x11

where C is the change in the x-direction, Cy is the change in the
y-direction, W is the appropriately sized window of pixel intensity
values around the target pixel, and * is the operator for the convolution
between two matrices. We then define the CIT C = max(|Cy/. |Cy|)
rather than using the usual L2 norm because a well-placed boundary
will typically have very different changes in the x- and y-directions

a) O0m  2,000m 4000m 6000m D) 0m
l L

using this method. A large filter mask was used because the CIT is not
used to determine the salt boundary (only to measure the confidence
in the one estimated) and allows an imperfectly placed (though still
reasonable) salt boundary to receive a good CIT score and be retained
in the analysis. This specific size was chosen so the width/length of the
window matched the width/length used in the GLCM analysis. The
spatial coarseness of this method reinforces the caveat that our analy-
sis is regional and not intended for high-resolution placement of indi-
vidual salt boundaries.

Conceptually, a small rectangle is centered on a pixel in a boun-
dary, and the rectangle is divided in half at the boundary (Figure 7a
and 7b). The sum of pixel intensities is computed in each half of the
rectangle (i.e., inside and outside the boundary) and the difference
taken between the two. This is repeated using horizontal and ver-
tical rectangles, and the rectangle with the larger difference is used.
A significant difference in the pixel intensity between the two
halves of the rectangle evidences a significant difference in seismic
textures across the boundary and is taken as evidence for an appro-
priately located boundary.

The CIT is calculated for each pixel along the boundary, and the
average CIT is assigned as the confidence score to that boundary.
This is repeated for all boundaries in all images. Due to noise in the
seismic data and the coarseness of this method, false positives were
a problem. Because the goal is a regional map and density of the
data is generally high, the lowest 50% of the CIT scored-boundaries
were removed from mapping. This value was determined based on
the examination of results using different thresholds. The CIT
scores for the remaining boundaries were divided by quartile for
grades: “A” for the top 25% of CIT scores, “B” for the next 25%
down, “C” for the second to lowest class, and “D” for the bottom
quartile. On the basis of visual inspection and mindful of the age of
the seismic used in the study, boundaries estimated at depths greater
than 6 s were dropped.

Depth conversion and mapping

Although the results of the texture and reflector analysis estimate
entire salt bodies, only the top of the salt is of interest here. The time
to bottom of salt was also examined, but in many of the seismic
sections the bottom of salt was not evident even by manual inspec-
tion. The time to top of salt was extracted from the estimated salt
boundaries in each line and translated vertically
to sit along the navigation line. These points were
then converted to depth based on a velocity field

0s— 0s =

Figure 7. The principle behind the CIT measure. In (a), a bisected rectangle is centered
on a pixel in the estimated boundary of a salt dome. The intensity of pixels within the
rectangle outside the boundary is clearly different from that of the pixels interior to the
boundary. In (b), the average pixel intensity of both sides of the rectangle is nearly the

same, so the boundary is removed.

estimated from 3593 velocity surveys. These sur-
veys were submitted to the U.S. government by
operators and are publicly available (USBOEM,
2018). Although it is typical for velocity to
increase with depth, a constant velocity was as-
sumed and linear regressions of time versus depth
were estimated. The average goodness-of-fit sta-
tistic (R?) for the regressions was 0.99, which jus-
tified using that functional form and its parameters
as a good first-order approximation of the local
velocity field. The 3593 estimates of average
velocity were gridded for a Gulf-wide velocity
map using an anisotropic ordinary kriging model
(ESRI, 2018). These estimated velocities were
used to convert the time to top of salt to depth
for every point in the study area.
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Because the original data from the study included dozens of sep-
arately shot surveys, in some locations, multiple lines of different
origins were in very close proximity. Because the analysis of each
line was performed independently, a single location (or a very small
neighborhood around a single location) could have multiple depths
to the top of salt. If inverse distance weighting IDW) gridding was
directly applied to the union of all points, the result would be an
extremely high variance surface that was much more a reflection
of the diversity of the data rather than the depth of the top of salt.

Therefore, the following algorithm was adopted. First, a grid of
base points, 500 m (1640 ft) apart was established over the study
area. Around each base point, all points representing the depth to
the top of salt within 350 m (1148 ft) of each point were found and
grouped by their line number. Then, all observations from a single
line in that group were averaged. Those line-specific average depths
in that neighborhood that were more than 25% deeper than the shal-
lowest average were dropped from the calculation. In total, 21,716
points were eliminated from the 241,416 points. Then, IDW was
applied, with a power of 1, to estimate the depth to top of salt sur-
face (ESRI, 2018). The final clipping rule was applied so that no
part of the estimated surface extended more than 2000 m (6560 ft)
from the nearest control.

COMPUTATIONAL COMPLEXITY

On a single desktop computer, running an Intel i5-3450,
3.10 GHz, 64 bit processor, sequential processing of 8043 seismic
lines in this study required approximately 645 h. Image analysis
occupied approximately 62% of this time, 31% for the reflector
analysis, and 7% for CIT, input/output, and miscellaneous tasks.
Our computer configuration, whereas not low end, was specifically
kept to a minimalist configuration in the spirit of measuring com-
putational complexity for the worst case.

The computational complexity of processes in this workflow, for
each line, was linear in the seismic image dimen-

RESULTS AND DISCUSSION

The principal result of the project is shown in Figure 8, a basin-
wide depth to the top of the salt map. From it, we are in a position to
judge the present research on the four criteria set forth at the outset.

First, did the workflow and its components yield technically useful
results? The study area in Figure 8 is 278,000 km? (107,000 mi?). Of
the total study area, 17% had insufficient seismic coverage for our
analysis. We removed 16% of the portion that we could map from
the final products for failure to meet our quality control thresholds.
Qualitatively, we compared the depth to salt by inspection of individ-
ual lines across the basin. Misses occurred, of course. However, the
final maps meet the needs of regional to basin-wide geologic mapping
— one does not plan a well on a basin-wide map. The practical utility
of our final mapping was dramatically improved by the systematic
reporting and use of assessment of certainty in the analysis (Figure 9).

Our top of salt compared well with published regional and basin-
wide work (Fort and Brun, 2012; Ganey-Curry, 2018). A larger
scale assessment of accuracy on the shelf is shown in two compar-
isons in Figure 10. In that map, which focuses on the central part of
the GOM shelf, south of Louisiana, our estimated shallow and in-
termediate diapiric salt bodies are shown in deep green. Compared
to these are the results of a project in the mid-1990s to hand-map
shallow salt across the GOM shelf (Hentz et al., 1997). The shallow/
diapiric salt that they found is symbolized in Figure 10 by purple
polygons. Finally, Figure 10 includes field outlines for oil and gas
fields identified as trapped by intermediate to shallow salt. These
classifications are made by the U.S. government on the basis of data
submitted to them by the operators (USBOEM, 2018). The outlines
of those fields appear in Figure 10 as blue striped polygons. Our
mapping of intermediate to shallow salt in this area has a very high
spatial correlation with the results of both independent studies.

These comparisons lend support to the validity of our mapping of
the top of the salt and do not provide guidance on the feasibility of

sions (mmn, where m is the length of the image, n
is the width, and mn is the total number of pixels
of the image). In the case of the GLCM, the proc-
ess had a computational complexity of O(N*mn)
(where N is the length of the search neighbor-
hood); whereas this expression is linear in mn,
it is not in N, which greatly increases computa-
tion time for larger search neighborhoods in
the GLCM.

Because of the analytic independence of
processing each line, a linear gain in computation
time can be made by parallelizing the project
across multiple processors. Likewise, because of
the centrality of matrix manipulation in our ap-

Louisiana
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proach (particularly, GLCM), switching from a
standard central processing unit to a graphics

[ 16000-20000 ||
[ 20,000 - 28,000

processing unit (GPU)-technology-based hardware

[ ]>28000

platform also seems to be a very effective step in
accelerating the analysis (perhaps as much as 10x).
Therefore, a 10-processor-GPU array could shrink
computer time by a factor of as much as 50-100
— reducing run time from a little less than a month
to, perhaps, less than three days.

Figure 8. The final depth to top of salt map for the study area within the U.S. portion of
the GOM. The dark black line shows the limits of the study area. White areas within the
study limits were not mapped either because there were no data (or insufficiently dense
data) within them, or the confidence in the estimated depth to the top of salt did not meet
the quality control thresholds. The gray boundaries in the map represent U.S. govern-
ment protraction areas (which organize leasing).

Downloaded from http://pubs.geoscienceworld.org/seg/geophysics/article-pdf/84/6/0113/4933543/ge0-2018-0569.1.pdf
bv The lib East China Geol Inst user



0120 Morris et al.

mapping salt thickness or the roots of salt structures, particularly at
substantial depths (which motivated the decision not to map below
6 s). As well, while taking effective steps to reduce false positives in
the analysis (mapping salt where there appears to be none), at this
stage of the research, we still do not have a scale-robust method for
identifying false negatives (mapping no salt on a line where salt

appears on visual examination). Very small holes (i.e., nonsalt)
in the middle of large salt bodies are removed by morphological
editing. However, a method of automatically identifying a seismic
line with no salt is an important goal that has not been achieved yet.
Second, is the approach scalable? Although we made methodo-
logical additions and amendments, most of the individual salt
discrimination methods used were previously in-

troduced in the geophysical literature, originally
using a very small number of lines or synthetic
data. Testing the limits of their scale of application
(as modified by us) was a fundamental project
; goal. At the basin scale, the quality of our results
: would have suffered had we not developed the
process of macroediting, or looking for errors
on a survey or regional scale.

Nevertheless, at least through a project of 8000
+ lines, we encountered no obvious limitation on
the volume of input data susceptible to a work-

flow of batch, automated image processing. In
addition, with respect to scale, the practical util-
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ity of the study to working geoscientists without
an included analysis of uncertainty shown in Fig-
ure 9 would have been lower. With the basin-
wide certainty mapping, as well as assessments

Figure 9. The final confidence grades assessed for each estimated salt/nonsalt boundary.
The assessments were restricted to the top 25% of all boundaries based on their length
(eliminating small boundaries that were likely processing effects) and the top half of

certainty scores, based on CIT.

Depth to Top Salt (ft) | N

B 0-s.000
@ [ 8,000 - 12,000
“] [ 12.000 - 16,000

[ 16,000 - 20,000

[ 20,000 - 28,000
% [ >28,000

28.5

-92 -91.5

Figure 10. The correspondence on the shelf between salt domes
estimated in this study (dark green) and two published studies.
The blue striped polygons are the outlines for fields identified with
shallow salt trapping (USBOEM, 2018). The purple polygons are
hand-mapped shallow salt (Hentz et al. 1997). Latitude and longi-
tude coordinates are provided for reference, and the labeled protrac-
tion areas are South Marsh Island (SM); Eugene Island (EI); and
Ship Shoal (SS).

of every individual boundary, a geologist or geo-
physicist can zoom in on his or her own project
area and automatically see consistent evaluation
of the reliability of this work.

Third, the analysis appeared robust in the face of
the diversity of 82 input surveys, acquired between
1981 and 1992. The macroediting procedure specifically attacked sur-
vey-level problems, but with that tool in hand, the effect of variance
in the input data appears to have been minimized (or at least, signifi-
cantly reduced). Our macroediting approach, however, while cor-
recting regional errors and improving accuracy, does not change
the regional nature of our mapping or make this a high-precision es-
timate of boundaries (especially on the flanks of salt structures).

Of course, accuracy would be immeasurably improved had we
based the project on the newest and most technically homogeneous
data. There would have also been a smaller area removed for quality
control reasons. However, there is nothing in the methodology that
requires old or diverse data — it will all work much better with the
latest and greatest inputs. Nevertheless, using this data set tested the
utility of a machine learning approach to exploit the massive idle
stores of older data, and that goal was accomplished with a positive
outcome. The fact that it will work with superior data is just a (very
large) upside.

The final dimension of performance was economic: Does the
value derived from batch, automated image analysis, such as pre-
sented here, exceed the marginal cost of conducting it? Ultimately,
this question must be left to companies holding seismic data resour-
ces similar to what we used (or better). However, in answering this
question, realize that the original costs of acquisition and processing
of these thousands of lines were sunk long ago. Moreover, although
further research and development of our approach is definitely war-
ranted, its forward costs are relatively low. Therefore, if this project
is representative, it is hard to imagine that the economic benefit
of this approach does not exceed by many times the costs of its
application.
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CONCLUSION

Salt is central to the habitat of hydrocarbons in the GOM and a
host of highly petroliferous basins around the world. Small-scale
studies had shown that salt could be located automatically, but
our research extended those findings in the scale, volume, and dif-
ficulty of input data quality. These successes, in turn, open the door
to potentially very profitable reuse of massive vintage seismic re-
sources that today mainly occupy storage space.

When we move from the shelf to the slope, there are still exten-
sive areas where the certainty in the analysis remains high. Indeed,
there are some areas on the slope, where the horizontal, canopy
geometries dominate, in which the identification of salt appears
very good. Because salt bodies are thinner, there are even some
cases in which the top and bottom of salt are clearly distinguished
from the surrounding rock.

However, on the slope the results also show that spatial variance
in the assessment of certainty of results is higher than on the shelf.
That is, on the shelf, there are broad and continuous areas receiving
the same certainty score. On the slope, whereas some areas have
high certainty scores, they tend to be smaller in area and less con-
tinuous. The variable morphology of salt on the shelf probably
drives this difference and suggests that experiments with different
models between these geologically disparate provinces are justified
in future research.

On a more general level, it must also be admitted that, in its clas-
sic embodiment as diapirs on a wide, passive margin shelf, salt is
one of the easier targets for pattern recognition. More nuanced fea-
tures will pose stiffer challenges: Faults, facies, rock properties, and
fluid types are all critically important. Features that synthesize em-
pirical geophysical properties and geologic theory, such as facies,
will probably raise the greatest challenges. Yet without success us-
ing these techniques, applied to salt on an industrial scale, the mo-
tivation to move on to more complex tasks would be undermined.

In testing a new technology, its limitations must be as clear as its
advantages. Most broadly, nothing from our experience supports the
popular notion that data may be dumped into an algorithm and use-
ful answers will magically appear. Expertise and many experiments
were required to design the workflow, find efficient and reliable dis-
criminators, test the results, and respond to systematic errors found.
Moreover, irrespective of the provenance of input data, when scale
exceeds the limit of hand checking output, automated quality con-
trol assessment must accompany the results for them to be accepted
and put to practical use.

Table A-1. GLCM statistics used.’

This research demonstrated the value of batched, automated
analysis to extract valuable regional geologic information from a
massive and diverse collection of geophysical data. Equally impor-
tant: The component tools we applied are broadly accessible to
those who sit on the massive volumes of data to which they can
be applied. After all, it is more experience in application that will
best distill the technical and economic value of automated analysis
of massive data sets from the lustrous aura that surrounds it.
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prietary to Earth Science Associates.

DATA AND MATERIALS AVAILABILITY
Data associated with this research are available and can be ac-
cessed via the following URL: doi: 10.5066/F7930R7P.
APPENDIX A
GLCM
Using GLCM consists of two parts:

1) Build the GLCMs for all pixels: Establish an examination pixel
near the upper left corner of the image, and define a neighborhood
of N X N pixels centered on it (here, N = 51). (This discussion

GLCM statistic Equation Measures

Contrast U = 201 Pij(i = J)? Amount of gray-level variation in search neighborhood.
Homogeneity a, = iszl <1+£+1)2) The smoothness of the gray-level distribution in the search neighborhood.
Dissimilarity o = D0y Pij (i =) Similar to contrast but with a smaller weight on p;;.

Entropy ahy =39, ZJG:, pij Inp;; Degree of disorder in the gray levels of the pixels in the search neighborhood.

Note: 3o, = the kth GLCM statistic, estimated for a target pixel located at nz, n in the seismic image. n, n = row and column indices of cells (pixels) in the entire seismic line image;

i, j = row and column indices for cells in the GLCM; G = the number of levels in the gray scale; p;; = empirical marginal probability of co-occurrence of the ith and jth gray levels
within the search neighborhood (i.e., the empirical counts of gray-level i horizontally adjacent to gray-level j for the search neighborhood, divided by the total number of possible
co-occurrences (N X (N — 1)).
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