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A 3D geographic information system (3D GIS) directly
loads and analyzes 3D seismic data for visualizing reservoir
structure, pressure, depositional and paleo surfaces, wells,
completions, logs, production, and other geologic and en-
gineering data. Using the tool, a machine learning proj-
ect analyzed large volumes of 3D seismic through 3D GIS
over hundreds of 3D seismic surveys covering most of the
Gull of Mexico to identily salt. Most forecasted salts were in
alignment with known salt locations from the training set.

Loading 3D seismic data
Loading and visualizing 3D seismic in 3D GIS advances
the utility of GIS technology in exploration and produc-
tion due to seismic’s fundamental role in reserveir and
structural imaging. Continued advances in seismic-ap-
plicable spatial GIS tools further leverage that gain. This
expansion of GIS technology fosters direct integration of
vector well data (e.g., logs, pressure) and local-regional
surfaces {e.g., paleo) with seismic sur-
veys. It also expands the application of

Conversion of seismic data to GIS-ready format has spe-
cific spatial requirements. First, the seismic must be depth
migrated as a GIS places itemns in real-world locations and
cannot use time as a spatial dimension. Additionally, the
geodetic data must be translormed into a regular grid in
geographic space. The 3D grid optimizes rendering of mas-
sive-sized 3D seismic data sets because the software is not
required to track the absolute location of every single point.
Even with these advantages, however, the data must be either
split into multiple files or a sampling program must be ex-
ecuted. SEG-Y files can be up to tens of gigabytes (GB) span-
ning thousands of square miles. The present maximum limit
of the mapping software is about 3 GB.

GOM visualization

A study for the Gulf of Mexico migrated 3D seismic surveys
in their native SEG-Y format and processed them for visu-
alization with 3D GIS. Fig. 1 shows the seismic in a typical
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machine-learning technicues which
-access a variety of data sources.

The SEG-Y file format is the indus- Lines = wells

Polygons = productive reservoirs f—4 e

Pink = top of salt

try standard storage for seismic data.
This format, however, stores data se-
quentially which is not beneficial for
modern computing processes. Loading
seismic data into 3D GIS, therefore, re-
quires changing the data structure. The
network common data [form (NetCDE),
originally devised for ocean and atmo-
spheric data, stores multidimensional
scientific data and works well for three-
dimensional subsurface data. The uni-
versality of NetCDF provides a wider
range of seismic data applications and
elficiently loads in 3D GIS.
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3D GIS-field view for reservoirs in Mis-

sissippi Canyon 807 (Mars-Ursa) field EUGENE ISLAND 276 GIS VISUALIZATIDN 6.2

looking to the west. Once the NetCDF Estimated ultimate
recovery, MNMbbl

was created, it was added to the 3D GIS R P

scene as a voxel layer (multidimension- 0007 M510
al spatial and temporal information in a WL
3D volumetric visualization). In Fig. 1,
the seismic has been sliced irito a back-
ground, giving cortext to the field’s
productive sands (3D polygons colored
by estimated ultimate recovery), wells
(showing resistivity log values), and the
top-of-salt surfaces (pinlk).

The 3D seismic layer functions like
any other in 3D GIS, except it has voxel
layer-specific tools. The most important
is Slice. Tt creates arbitrary cross-sections
through the seismic data in any direc-
tion and orientation. The seismic cube
can be peeled back to reveal various inline and crossline data
throughout the survey. Typical GIS tools apply, like clicking
on seismic data to show a pop-up window with associated
data, There is also a hover [unctionality that displays the geo-
graphic and depth location of each point in the seismic.

Typically, seismic is loaded to show the structures im-
plied by amplitudes. Each voxel, however, can store a vector
of valuable variables. If the velocity survey is available, there
is an immediate advantage to easily filter velocity data. In
Fig. 2, a velocity cube was restricted to the highest veloci-
ties (> 14,000 ft/sec), providing a first approximation of the
location of salt within a survey. In this case, the survey cov-
ers most of the southern Eugene Island protraction area in
the Gulf of Mexico.

The black lines are boreholes, and the rectangles are
3-sq mile lease blocks. Estimated salt volume was extracted
from the velocity model of the seismic survey. This analysis
produced a regional salt volume (Fig. 2) which shows a salt
dome responsible for organizing the accumulations of the
Eugene Island 276 field (pink). Reservoirs between 6,500
and 11,000 ft are mapped as 3D polygons, colored to reflect
estimated ultimate recovery. Wells are indicated by black
lines. The dome rises above the field’s reservoirs to just be-
low the seafloor.

The 3D GIS framework readily adds vector data (wells and
teservoirs) and gridded surfaces of geologic variables (age, en-
vironment of deposition), or drilling information (pressure).

Machine learning

Rendering 3D SEG-Y into NetCDF and satisfying geodetic

demands of a GIS prepares seismic for machine learning

analysis. These requirements support analytic operations
on the 3D seismic data which would be much more diffi-
ult if just relying directly on SEG-Y. The utility was tested

by teaching it to identify salt.
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Of more than 1400 3D GOM seismic surveys avail-
able to the authors, a minority contained velocity surveys.

A supervised machine-learning model was trained to clas-

sify each voxel in all surveys as salt or non-salt to produce
3D salt maps equivalent to Fig. 2 (which relied on velocity
data). Taking the supervised learning approach to regional
salt mapping is in contrast to previous work using unsuper-
vised techniques applied to 2D seismic.' .

Surveys with velocity data were filtered to records with
velocity > 14,000 ft/sec. This became the training set for the
location of salt in the survey. At each point classified as salt
by velocity, a flag was added to the 3D seismic layer. For all
locations outside estimated salt, the flag was set to non-salt.
This set up a binary forecasting assignment (OGJ, Mar. 6,
2023, p. 22).

Many machine learning applications on seismic are fo-
cused on using a portion of a survey as the training set with
the goal to forecast the remainder of the survey. Other ap-
plications use synthetic data for training and testing pur-
poses. This study used several surveys processed by differ-
ent companies over many years for training and forecasting.
This approach was problematic, as the range of amplitude
values varied and the spacing between the amplitude sam-
ple locations was different in all three dimensions for each
of the surveys.

To address the former issue, amplitude values were nor-
malized, as is standard practice in machine learning pro-
cesses. The latter issue was solved by scaling surveys for
uniform spacing between amplitude sample locations in all
dimensions and matches between all surveys. This task was
accomplished using existing scaling libraries as the seismic
data stored as a NetCDF is already arranged as a three-di-
mensional matrix.

A convolutional neural network (CNN, specifically a U-
Net) was then applied to the training surveys, equipping each
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sample with seismic amplitude data plus
the velocity-based salt or no-salt [lag.
CNN divides the entire survey into 32 x
32 % 32 x 1 grid voxels, where the grid
is spaced 64 ft apart and stores enly one
value (amplitude). Using the voxel cube,
the CNN model accumulates patterns in
amplitude of the surrounding voxels as
they relate to whether a voxel is salt or
non-salt.

The CNN transforms those patterns
into predictions, which are assessed
for accuracy based on a sample test-set
held out of the original training. Exam-
ining errors in prediction, model pa-
rameters are updated relating cube am-
plitude distributions to salt and no-salt
flags, and the data is reprocessed. An
increasingly reliable saltno-salt pre-
diction machine builds from multiple
passes through the training surveys.
This analysis uses the Keras package in
Python with an Adam optimizer and
binary cross-entropy as a loss func-
tien (because it is a binary classifica-
tion problem).

Fig. 3a and 3b compare early results between the distribu-
tion of salt based on velocity [iltering {assumed to be “truth”)
and the CNN salt or no-salt prediction for the same place.
Fig. 3a shows forecasted probability for each voxel that is in
salt. Salt is either present (red) or ahsent (green). There are
some areas at the edges of the predicted salt that are equivo-
cal predictions, but most forecasted values reflect a high de-
gree of certainty in the support of binary classification.

Fig. 3b imposes the velocity-estimated boundary of the

CNN FORECASTED SALT PROBABILITIES fig. 3

a. CNN modeled salt probability from seismic amplitude data

M Low salt probability
W High salt probability

b. Actual salt location based on velocity data

B Actual salt
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