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A multilayer perceptron (MLP) neural network identifies 
bypassed pays in existing wells. These accumulations are 
smaller than in typical discovered reservoirs, but can be de-
veloped faster, at lower cost, and with less risk than drilling 
new wells, especially considering additional transportation 
and processing required in new exploitation areas.

MLP machine learning
Drilling and reservoir parameters, missing sections of well 
logs, and optimized production strategies typically are pre-
dicted through analysis of a few neighboring wells. Ma-
chine learning, however, has not yet been fully exploited 
to analyze thousands of wells and hundreds of reservoirs 
together to gain strategic and site-specific inferences.  

To address this, MLP models were applied to well logs 
from 5,217 wells in the Gulf of Mexico to discover untapped 
reserves. Using up to 10 geophysical, geochemical, and lith-

ologic logs as inputs, predictions were made of the probabil-
ity of pay (Pr(pay)) for more than 35 million 1-ft intervals 
in these wells. Hundreds of bypassed oil and gas accumula-
tion candidates were discovered and subsequently filtered 
using engineering and economic criteria.   

This approach does not replace analysis by petrophysi-
cists and geologists but screens massive data volumes au-
tomatically, objectively, and quickly. The MLP predictions 
rank prospects and prioritize expert analysis. Once put in 
an engineering and economic context, this technology sets 
benchmarks for broad portfolios of opportunities.  

MLP application
The wells used in the study were drilled since 2002. Of them, 
2,664 produced oil and gas from 4,534 completed intervals 
(i.e., pays). The remaining 98% of the penetrated rock has 
been unproductive to date. Inputs came from up to 10 well 
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FIG. 1GREEN CANYON 743 DEEP WELL LOG
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took roughly two-man months to analyze these wells using 
MLP, significantly saving time over hand analysis. 

Results
Modelling with 10 log curves as input (Class 3) produced 
better pay vs. dry estimates than modelling with five curves 
(Class 2), as expected. Likewise, Class 2 modelling is more 
accurate than Class 1. Using a 50-50 ratio of pay vs. dry 
intervals to sample prediction accuracy, the best Class 1 
model correctly identified pay intervals with 76% accuracy. 
Class 2 achieved 87% accuracy, and Class 3 recorded 97% 
accuracy. Increasing accuracy, however, comes at a cost. 

Full log suites are not run on all wells. A Class 1 model, re-
lying only on MD, resistivity, and gamma, will apply to 93% 
of all wells logged. Adding neutron density and bulk den-
sity for Class 2 reduces applicability to only 56% of logged 
wells. The best, most informed model, requiring 10 curves, 
can only be run on 6% of all logged wells. Class 3 is more ap-
plicable to deep water wells, where logging is more extensive.

Fig. 1 shows how the models react to known produc-
tive pay in a completion interval (blue) for a well in Atlantis 
field (Green Canyon 743). Predictions of Pr(pay) for the three 
model classes are in Track 1; a black dashed line marks the 
candidate threshold at Pr(pay) = 0.90.  The completed inter-
val is shown in shades of blue in the center of the log. The 
purple lines in the context track (Track 7) show the vertical 
extent of the five individual completions. Track 6 shows how 
the average of the three model predictions follows the lithol-
ogy trend (% sand and % shale from mud logs).  

Class 2 and 3 scores clearly indicate prospectivity (Pr(pay) 
≥ 0.90) in the shallowest part of the completion (Interval B). 
The same score occurs in the deep section of the completion 
interval (Interval D). In between, in Interval C, lower average 
Pr(pay) scores and lower coherence among them identify a het-
erogeneous section with poorer prospectivity log indicators. 

log curves for each well. Experiments with different combi-
nations of logs led to three classes of MLPs. Class 1 contained 
only three curves: measured depth (MD), deep resistivity, 
and gamma ray. Class 2 added two more: neutron density 
and bulk density. Class 3 had all 10 logs, bringing in meth-
ane, ethane, propane, and both percent sand and percent 
shale from mud logs. In addition to the logs, every 1-ft ob-
servation had a pay designation. If the interval falls within a 
completion, it is assigned a value of 1 (pay observation), oth-
erwise it is assigned a value of 0 (dry observation).

Although different variants were tested in each class, all 
models had the same objective: predict pay vs. dry for each 
foot with the highest empirical accuracy. This is done by the 
MLP neural network applying a progressive series of linear 
and nonlinear transformations to each 1-ft log reading. In 
the last step it produces an estimate of probability between 
0 and 1 that the 1-ft interval is in a completed pay inter-
val. The model-estimated Pr(pay) is subsequently subtract-
ed from the actual interval-based binary pay-dry value for 
that foot to produce a magnitude prediction error between 
model and reality. Thus, the MLP incorporates “supervised 
learning” architecture, where during model training each 
estimate is checked against reality.

The error for an interval’s prediction is then distributed 
back across the transformations that resulted in the pre-
diction. On that basis, small adjustments are made in the 
transformation parameters to improve the likelihood that 
the prediction for the next observation will be closer to cor-
rect. As there are typically hundreds of thousands to mil-
lions of 1-ft observations, these small improvements accu-
mulate, ultimately generating reliable forecasts. 

After determining the best version of the models in each 
MLP, they were run against all intervals that had the required 
logs. This produced one to three predicted Pr(pay) scores for 
each of the 35 million 1-ft observations in the 5,217 wells. It 

FIG. 2GREEN CANYON 743 UPPER WELL LOG 

Predictions,  Gamma, API Resistivity,  Bulk density,  Methane Lithology, %
Pr(pay)  ohm-m g/cc Ethane Avg. Pr(pay), % 
Class 1, Class 2,   Neutron density,  Propane, ppm 
Class 3   v/v

M
ea

su
re

d 
de

pt
h,

 f
t

18,250

18,500

0 0.25 0.50 0.75 1.00 0 50 100 150 0.1 10 100 1.8 2.2 2.6 10 100 1K 10K 100K 0 25 50 75 100 
             51 27 3

Shale

Sand

Silt



SPECIAL REPORT

24	 Oil & Gas Journal | Mar. 6, 2023

©EN
DE

AV
OR®

20
20

MLP application 
The neural network approach is not specific to pay identi-
fication. The predicted variable could be gas-oil ratio, es-
timated ultimate recovery, or maximum production rate/
ft. Such a suite of tools could assess large portfolios within 
companies. Alternatively, extensive regional analysis is ac-
cessible using public data, as was done in this study.  

On a finer but related scale, systematic study of thou-
sands of completions could relate the character of reservoir 
heterogeneities, such as that identified in Fig. 1, to com-
pletion production performance. Alternatively, mechani-
cal logs can be analyzed to relate drilling time and costs. 
In such a screening analysis, most initial candidates will 
not justify development. However, after imposing basic 
engineering and economic criteria, there are still scores of 
promising candidates that justify expert examination.  
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Above completion (Interval A), 
none of the models exceed Pr(pay) = 
0.90. Just below the completion (In-
terval E), there is a small prospective 
section identified by the Class 3 model 
reflecting the general practice of com-
pleting above the gas-water contact. 
Such zones can be easily filtered.

Fig. 2 shows thick, but otherwise 
typical, bypassed pay sitting in a shal-
lower interval in the same well as Fig. 1. 
The intervals for each model’s prediction 
of Pr(pay) ≥ 0.9 are tinted: red in Track 2 
for Class 1, green in Track 3 for Class 2, 
and purple in Track 5 for Class 3. 

The bypassed pay (in Interval B) 
was found by both Class 2 and Class 
3 models. The log displays classic in-
dicators of pay; left excursion on gamma with a right shift 
in resistivity, crossing of bulk density and neutron, and el-
evated gasses in a shale-sealed sandy section. 

The shallow section immediately above Interval B (in In-
terval A) shows similar results of the log-analysis process. 
All three model classes condemn this section with scores 
of Pr(pay) < 0.90. The strength of that judgement is also 
proportional to the information available to each model. 
For Class 1, the least-informed model, Pr(pay) scores are 
0.5-0.6. The better-informed Class 2 score is systematically 
lower, between 0.3-0.5. The negative results for the most 
data-intensive model, Class 3, are clear, with single-digit 
scores hugging the left axis.

To place model results within geologic context, Fig. 3 
shows Pr(pay) scores along well bores in Mars-Ursa field 
(Mississippi Canyon 807) in 25-ft averaged increments. 
Lower Pliocene-producing reservoirs are illustrated in semi-
transparent gray. The scene center is at 11,732 ft subsea.

High and low prospectivity zones are identified among 
the producing reservoirs along the wellbores using colored 
pay flags. High-prospectivity zones (red) outside the res-
ervoirs warrant consideration as extension targets or can-
didate bypassed pays, ready for detailed petrophysical and 
geologic examination. 

Operational considerations, like the minimum thickness 
of candidate intervals and permissible gaps of Pr(pay) < 0.9 
within them, are required for a tractable screening system. 
The threshold value of 0.9 can also be changed based on ad-
ditional analysis and experience. Engineering and economic 
factors can be integrated to segregate opportunities: those in 
producing wells, those on open blocks, and access to produc-
tion and transportation. Cataloging the concrete candidate 
by-passed pays found with this system depends on the ex-
act qualifications imposed for candidacy, but these critically 
important factors are relatively easy to introduce and can be 
changed to test the robustness of the filtering process. 

FIG. 3MLP PREDICTED PAY
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